

    
      
          
            
  
UIClasses - Data-Modeling for User Interfaces


Contents:


	Introduction
	This is not an ORM

	Bags of Variables

	How to install





	Tutorial
	Declaring a Model for user interfaces
	Two ways of instantiating models
	1. Passing a dict

	1. Passing a keyword-arguments









	Automatic getters and setters
	Invisible Getters/Setters
	Read-only Getters

	Write-only Getters

	Read-write Properties













	API Reference
	Model

	Model.List

	Model.Set

	DataBag

	UserFriendlyObject

	DataBagChild

	IterableCollection

	Utils

	File-System Helpers

	Meta





	Release History
	Changes in 2.2.1

	Changes in 2.2.0

	Changes in 2.1.0

	Changes in 2.0.3

	Changes in 2.0.2

	Changes in 2.0.1

	Changes in 2.0.0

	Changes in 1.1.1

	Changes in 1.1.0












Indices and tables


	Index


	Module Index


	Search Page








          

      

      

    

  

    
      
          
            
  
Introduction

UIClasses is a library that leverages data-modeling for the
user-interface layer of your python project.

It provides the Model class that adds Data
Classe [https://docs.python.org/3/library/dataclasses.html] features
to its subclasses.

With UIClasses you can separate backend from frontend data modeling,
preventing coupling in your python project.


This is not an ORM

UIClasses is designed to work in tandem with your favorite ORM, not a replacement for it.

Java has DAO (Data-access objects) and POJO (Plain Old Java Objects),
usually POJOs are used at the UI-layer of an application with data
mapped from a DAO whose data came from the storage layer of an
application.

In this context, UIClasses are POJOs, and ORM Models, for example
SQLAlchemy, are DAOs.




Bags of Variables


	Objects optimized for user interfaces.


	Methods to traverse nested dicts, convert to and from json


	ModelList and ModelSet collections for robust manipulation of collections of models.


	No I/O happens in models.


	Collections can be easily cached to leverage responsive user interfaces.







How to install

pip3 install uiclasses











          

      

      

    

  

    
      
          
            
  
Tutorial

This is a basic guide to the most basic usage of the module.

In this guide we will define data models for data returned by the
Github API to retrieve users https://developer.github.com/v3/users/
and present this data to the UI layer in a concise way.

At the end we will also build a very simple client to the Github API.


Declaring a Model for user interfaces

The model below is defined according to the Single User Response [https://developer.github.com/v3/users/#get-a-single-user] from the Github V3
API.

Take a look here to see what a full json response looks like [https://developer.github.com/v3/users/#response] before continuing
so the model definition below will make more sense.

Okay, so you see there are several fields, but only a few of the User
properties are relevant for user-interface purposes.

from uiclasses import Model

class GithubUser(Model):
    login: str
    email: str
    hireable: bool
    public_repos: int
    public_gists: int
    followers: int
    following: int





Every field declared with type annotations [https://docs.python.org/3/library/typing.html] is considered to be
visible in the user interface.

This is this is powered by dataclasses.fields() [https://docs.python.org/3/library/dataclasses.html#dataclasses.fields].


Two ways of instantiating models


1. Passing a dict [https://docs.python.org/3/library/stdtypes.html#dict]

octocat = GithubUser({
    "login": "octocat",
})

print(octocat.to_dict())





{
    "login": "octocat",
}








1. Passing a keyword-arguments

octocat = GithubUser(
    login="octocat",
)
print(octocat.to_dict())





{
    "login": "octocat",
}












Automatic getters and setters

Every visible field becomes a property that can be accessed directly
via instance as if it were a regular @property

user1 = GithubUser()
user1.login = "octocat"

print(user1.to_dict())





{
    "login": "octocat",
}






Invisible Getters/Setters

Sometimes it can be useful to define properties that act on the
internal data of a model without making them visible to the user
interface.

UIClasses provides special annotations to achieve this with 3 variations:


	Read-only Getters


	Write-only Setters


	Read-Write Properties





Read-only Getters

from uiclasses import Model


class User(Model):
    id: int
    username: str
    token: Getter[str]


foobar = User(id=1, username="foobar", token="some-data")
print(foobar.to_dict())
print(foobar.token)
print(foobar.get_table_columns())

try:
    foobar.token = 'another-value'
except Exception as e:
    print(e)





{
    "id": 1,
    "username": "foobar",
    "token": "some-data",
}
"some-data"
["id", "username"]
"'User' object has no attribute 'token'"








Write-only Getters

from uiclasses import Model


class User(Model):
    id: int
    username: str
    token: Setter[str]


foobar = User(id=1, username="foobar", token="some-data")
print(foobar.to_dict())
foobar.token = 'another-value'
print(foobar.to_dict())
print(foobar.get_table_columns())

try:
    print(foobar.token)
except Exception as e:
    print(e)





{
    "id": 1,
    "username": "foobar",
    "token": "some-data",
}
{
    "id": 1,
    "username": "foobar",
    "token": "another-value",
}
["id", "username"]
"'User' object has no attribute 'token'"








Read-write Properties

from uiclasses import Model


class User(Model):
    id: int
    username: str
    token: Property[str]


foobar = User(id=1, username="foobar", token="some-data")
print(foobar.token)
print(foobar.to_dict())
foobar.token = 'another-value'
print(foobar.token)
print(foobar.to_dict())
print(foobar.get_table_columns())





"some-data"
{
    "id": 1,
    "username": "foobar",
    "token": "some-data",
}
"another-value"
{
    "id": 1,
    "username": "foobar",
    "token": "another-value",
}
["id", "username"]















          

      

      

    

  

    
      
          
            
  
API Reference


Model

>>> from uiclasses import Model
>>>
>>> class User(Model):
...     email: str
...






	
class uiclasses.Model(__data__: dict [https://docs.python.org/3/library/stdtypes.html#dict] = None, *args, **kw)

	Base class for User-interface classes.

Allows declaring what instance attributes are visible via type
annotations or __visible_attributes__.

Example:

from uiclasses.base import Model

class BlogPost(Model):
    id: int
    title: str


 post = BlogPost(
     id=1,
     title='test',
     body='lorem ipsum dolor sit amet'
 )

 print(str(post))
 print(repr(post))
 print(post.format_robust_table())












Model.List

>>> user1 = User(email="aaaa@test.com")
>>> user2 = User(email="bbbb@test.com")
>>>
>>> users = User.List([user1, user2, user1])
>>> users
User.List[user1, user2, user3]






	
class uiclasses.collections.ModelList(children: Iterable[uiclasses.base.Model])

	Implementation of IterableCollection for the
list [https://docs.python.org/3/library/stdtypes.html#list] type.








Model.Set

An ordered set for managing unique items.

>>> user1 = User(email="aaaa@test.com")
>>> user2 = User(email="bbbb@test.com")
>>>
>>> users = User.Set([user1, user2, user1])
>>> users
User.Set[user1, user2]






	
class uiclasses.collections.ModelSet(children: Iterable[uiclasses.base.Model])

	Implementation of IterableCollection for the
OrderedSet [https://pypi.org/project/ordered-set/] type.








DataBag


	
class uiclasses.DataBag(__data__: dict [https://docs.python.org/3/library/stdtypes.html#dict] = None)

	base-class for config containers, behaves like a dictionary but is
a enhanced proxy to manage data from its internal dict
__data__ as well as traversing nested dictionaries within
it.








UserFriendlyObject


	
class uiclasses.UserFriendlyObject

	






DataBagChild


	
class uiclasses.DataBagChild(data, *location)

	Represents a nested dict within a DataBag that is aware of its
location within the parent.








IterableCollection


	
class uiclasses.collections.IterableCollection

	Base mixin for ModelList and ModelSet, provides methods to
manipulate iterable collections in ways take advantage of the
behavior of models.

For example it supports filtering by instance attributes through a cal to the
attribute_matches() method of each children.

Features:


	sorted_by() - sort by a single attribute


	filter_by() - to filter by a single attribute


	sorted() - alias to MyModel.List(sorted(my_model_collection)) or .Set()


	filter() - alias to MyModel.List(filter(callback, my_model_collection))


	format_robust_table()


	format_pretty_table()











Utils




File-System Helpers

runtime helper functions used for leveraging idiosyncrasies of testing.




Meta







          

      

      

    

  

    
      
          
            
  
Release History


Changes in 2.2.1


	Add behavior to uiclasses.collections.is_iterable() consider
anything with a callable __iter__ attribute a callable.







Changes in 2.2.0


	Change behavior of explicit __visible_attributes__ declaration:
when declared, the visible fields will be exactly those. If not
declared, visible fields will be extracted from type annotations.


	The old behavior of __visible_attributes__ is now available
through Model.__declared_attributes__ which
__visible_attributes__ (if any) with types from annotations.


	Support casting IterableCollection with itself and
introduce uiclasses.collections.is_iterable() helper function.


	Show RuntimeWarning if typing module is installed as distribution
package in python > 3.6.1.







Changes in 2.1.0


	Support nested model types.


	Cast values to their known type when instantiating a new Model.







Changes in 2.0.3


	perform super()__setattr__ behavior even when an explicit setter
is not defined and the attribute does not exist in the instance.







Changes in 2.0.2


	fix python 3.6 support.







Changes in 2.0.1


	don’t try to cast annotations containing typing.Generic or
typing.Any.







Changes in 2.0.0


	support explicit declaration of getters and setters that are not
visible properties.


	implement type casting for all model attributes.


	automatic parsing of boolean-looking strings for fields of type
bool.







Changes in 1.1.1


	Allow Model(x) where x is not a dict but can be cast into a dict.







Changes in 1.1.0


	Model.Set() and Model.List() not support generators.










          

      

      

    

  

    
      
          
            

   Python Module Index


   
   u
   


   
     		 	

     		
       u	

     
       	[image: -]
       	
       uiclasses	
       

     
       	
       	   
       uiclasses.fs	
       

     
       	
       	   
       uiclasses.meta	
       

     
       	
       	   
       uiclasses.utils	
       

   



          

      

      

    

  

    
      
          
            

Index



 D
 | I
 | M
 | U
 


D


  	
      	DataBag (class in uiclasses)


  

  	
      	DataBagChild (class in uiclasses)


  





I


  	
      	IterableCollection (class in uiclasses.collections)


  





M


  	
      	Model (class in uiclasses)


      	ModelList (class in uiclasses.collections)


      	ModelSet (class in uiclasses.collections)


  

  	
      	
    module

      
        	uiclasses.fs


        	uiclasses.meta


        	uiclasses.utils


      


  





U


  	
      	
    uiclasses.fs

      
        	module


      


      	
    uiclasses.meta

      
        	module


      


  

  	
      	
    uiclasses.utils

      
        	module


      


      	UserFriendlyObject (class in uiclasses)


  







          

      

      

    

  nav.xhtml

    
      Table of Contents


      
        		
          UIClasses - Data-Modeling for User Interfaces
        


        		
          Introduction
          
            		
              This is not an ORM
            


            		
              Bags of Variables
            


            		
              How to install
            


          


        


        		
          Tutorial
          
            		
              Declaring a Model for user interfaces
              
                		
                  Two ways of instantiating models
                


              


            


            		
              Automatic getters and setters
              
                		
                  Invisible Getters/Setters
                


              


            


          


        


        		
          API Reference
          
            		
              Model
            


            		
              Model.List
            


            		
              Model.Set
            


            		
              DataBag
            


            		
              UserFriendlyObject
            


            		
              DataBagChild
            


            		
              IterableCollection
            


            		
              Utils
            


            		
              File-System Helpers
            


            		
              Meta
            


          


        


        		
          Release History
          
            		
              Changes in 2.2.1
            


            		
              Changes in 2.2.0
            


            		
              Changes in 2.1.0
            


            		
              Changes in 2.0.3
            


            		
              Changes in 2.0.2
            


            		
              Changes in 2.0.1
            


            		
              Changes in 2.0.0
            


            		
              Changes in 1.1.1
            


            		
              Changes in 1.1.0
            


          


        


      


    
  

_static/screenshot-blog-list-pretty-table.png
I id | title
|11 title
I 21 title






_static/minus.png





_static/plus.png





_static/screenshot-blog-list-robust-table.png
title: title 2
body: body 2






_static/file.png





